In Proc. of SC2000: High Performance Networking and Computiayember 2000.

Integrating Parallel File 1/0 and Database Support for
High-Performance Scientific Data Management

Jaechun No Rajeev Thakur Alok Choudhary
Math. and Computer Science Division Dept. of Electrical @winputer Eng.
Argonne National Laboratory Northwestern University
Argonne, IL 60439, USA Evanston, IL 60208, USA
{j ano, thakur }@rmcs. anl . gov choudhar @ce. nw. edu
Abstract

Many scientific applications have large 1/0 requirememgerms of both the size of data and the
number of files or data sets. Management, storage, efficdeeta, and analysis of this data present an
extremely challenging task. Traditionally, two differesaiutions are used for this problem: file 1/O or
databases. File I/O can provide high performance but i@tedio use with large numbers of files and
large and complex data sets. Databases can be convenigitieflend powerful but do not perform
and scale well for parallel supercomputing applicationg Neve developed a software system, called
Scientific Data Manager (SDM), that aims to combine the g@adufres of both file I/O and databases.
SDM provides a high-level API to the user and, internallygsia parallel file system to store real data
and a database to store application-related metadata. 8kdd advantage of various I/O optimizations
available in MPI-1O, such as collective 1/0O and noncontigsicequests, in a manner that is transparent
to the user. As a result, users can write and retrieve datathgtperformance of parallel file I/O, without
having to bother with the details of actually performing fii®.

In this paper, we describe the design and implementatiorDdfl. SWVith the help of two parallel
application templates, ASTRO3D and an Euler solver, westtate how some of the design criteria
affect performance.

0-7803-9802-5/2000/$10.@0 2000 IEEE

1 Introduction

Many large-scale scientific experiments and simulatiomegge very large amounts of data [8, 1] (on the
order of several hundred gigabytes to terabytes), sparihingands of “files” or data sets. Management,
storage, efficient access, and analysis of this data praseattremely challenging task. Currently avail-
able techniques for this purpose are either raw file-l/Orfates, such as MPI-1O [11, 19], or full-fledged
databases. File-I/O interfaces provide high performamtaite too cumbersome to use with large, complex
data sets and large numbers of files. For example, the useéremember file names and the organization
of data in a file and must specify the exact location in the fidefwhich data must be accessed. Databases,
on the other hand, provide a convenient, high-level interfand powerful data-retrieval capability, but they
do not measure up to the performance requirements of la@e-scientific applications running on super-
computers.

We have developed a software system, called Scientific Datealgler (SDM), that aims to combine the
good features of both file I/O and databases. SDM provideglaleivel, user-friendly interface. Internally,
SDM interacts with a database to store application-relatethdata and uses MPI-10 to store the real data
on a high-performance parallel file system. SDM takes adgnof various I/O optimizations available in
MPI-10, such as collective I1/0O and noncontiguous requésta,manner that is transparent to the user. As
a result, users can access data with the performance ofgbdital I/O, without having to bother with the
details of file I/O. Figure 1 illustrates the basic idea.

In this paper, we describe the design and implementatioD®d.SSDM is currently implemented to use
either MySQL [20] or PostgreSQL [24] as the database for dataand MPI-1O for file 1/0. In designing
such a system, we have a wide choice of how to organize theimlditas. We have implemented three
different approaches. At one extreme, level 1, we storeadH dets in separate files as they are generated.
At the other extreme, level 3, we store data sets in a verylsmaiber of files and, using a database table,
keep track of where in the files each data set is stored. Wehaisoan intermediate approach, called level 2.
We examine the performance implications of using each cfatapproaches by studying the performance
results obtained for two application templates, ASTRO3M an Euler solver, on an IBM SP and SGI
Origin2000.

The rest of this paper is organized as follows. In Section 2ligseuss our goals in developing SDM.
In Section 3 we describe how SDM is implemented. Performaeselts are presented in Section 4. We
discuss related work in Section 5. We conclude and outlimgtauns for future work in Section 6.

2 Design Objectives

We had three major goals in developing SDM: provide highfgarance parallel /O, provide a high-level
application programming interface (API) that eliminatke heed for the user to bother with the details of
low-level file I/O or databases, and store enough metadaaatabase so that the user can easily retrieve
previously stored data.

e High-Performance 1/0. To achieve high-performance 1/O, we decided to use a ghfdd-1/0 sys-
tem to store real data and use MPI-10O to access this data.|®|Rke 1/O interface defined as part
of the MPI-2 standard [11, 19], is rapidly emerging as thaddad, portable API for 1/O in parallel
applications. High-performance implementations of MBI|-both vendor and public-domain imple-
mentations, are available for most platforms [9, 15, 25,38, MPI-I0 is specifically designed to
enable the optimizations that are critical for high-pariance parallel I/O. Examples of these opti-
mizations include collective 1/O, the ability to access oomtiguous data sets with a single function,

10
(oM) g
[V
N

Database

%

Hl
I

Parall el file system

i

1

HPSS Hierarchicd storage

management system

Figure 1: SDM architecture

and the ability to pass hints to the implementation aboutsEpatterns, file-striping parameters, and
so forth.

e High-Leved API. Our goal was to provide an API that did not require the us&ntaw either MPI-10
or databases. The user can specify the data with a highdesgekiption, together with annotations,
and use a similar API for data retrieval. SDM internally skates the user’s request into appropri-
ate MPI-10O calls, including creating MPI derived datatypesnoncontiguous data [33]. SDM also
interacts with the database when necessary, by using emt&{QL functions.

e Convenient Data-Retrieval Capability. SDM allows the user to specify names and other attributes
to be associated with a data set. SDM internally selects aditee into which the data will be stored;
the mapping between data sets and file names is stored intdigada. The user can retrieve a data
set by specifying a unique set of attributes for the desiegd.d

3 Implementation

To describe the metadata storage in the database, the SDVaA#khe organization of data in files, we
use an example, ASTRO3D, an astrophysics application degdlat the University of Chicago. For sim-
plicity of explanation, we consider the two-dimensionakien of this three-dimensional application. (The
performance results presented in this paper are for theéhftde-dimensional version.) In this application,
data is stored in several arrays that are block-distribimegch dimension. At various time steps, several
of these arrays are written to files for data analysis, restad visualization. Six floating-point arrays are
written for data analysis and another six for restart; sevemacter arrays are written for visualization. The
frequencies of the writes can be varied.
We use the terndata setto refer to each array being written addta groupto refer to all the arrays

written at a time step for a particular purpose such as dafysis. For simplicity of explanation, let us

Application

Client API
MPI I/O

\

run_table

runid | dimension| problem_sizenumoftimestepsyear month| day | hour| min
1
2
3

access_pattern_table

runid datasef basic_pattern data_type storage_prder access_pattern global_size
File System 2 a:o
2| a

2 a
[Datd Y

execution_table

runid | dataset| timesteps| file_offset | file_name

I

2 a1 1
2 az 1

Figure 2: Database tables used in SDM

assume that three arrays are written for data analysishantiiree for restart, and four for visualization.
(Note that all arrays—six, six, and seven—were used in thieprance experiments reported in this paper.)
Let us further assume that the data-analysis and restanslane performed every six time steps and the
visualization dumps are performed every four time stepst dheaq, ay be the three data sets for data
analysis andi = (aq, a1, a3) be the data group for data analysis. Similarly, we hBve (b, b1, b2, bs3) for
visualization and”’ = (co, ¢1, ¢2) for restart.

3.1 Database Tablesto Store M etadata

SDM uses three database tables for storing metadatatable accesspatterntable, andexecutiontable
(see Figure 2). These tables are made for each applicatamt tiine an application writes data sets, SDM
enters the problem size, dimension, current date, and aieidgntification number (runid) to the ruable.
The accesgpatterntable includes the properties of each data set, such asppatestorage order, data access
pattern, and global size. SDM uses this information to male@priate MPI-10 calls to access the real data.
The executiortable stores a globally determined file offset denoting theting offset in the file of each
data set.

SDM_initialize(App);
A = SDM_make_datalist(3, §o,a1, a2 });

initialize(&date);
A[0].data_type = FLOAT;

A[0].access_pattern[0] = BLOCK;
A[0].access_pattern[1] = BLOCK;
SDM_associate_attributes(3, &A[0]);

date.year = 1999;
date.month = 10;
date.day = 10;

handleA = SDM_set_attributes(3, A): handleA = SDM_select_attributes(3, A);
headerA = SDM_select_attributesH(3, A);
headerA = SDM_make_header(3, A, FLOAT, 6);

. . . DM_subarray(handleA, 3, 0, StartingPoints, SubArraySizes, NULL);
SDM_subarray(handleA, 3, 0, StartingPoints, SubArraySizes, NULL);

for (i=0; i<lastTimestep; i++) { for (i=0; i<lastTimestep; i++) {
: SDM_readH(headerAo, i, headerBuf);
Computation SDM_readH(headerA1, i, headerBuf);
: SDM_readH(headerAgz, i, headerBuf);
SDM_writeH(headerA,ao, i, headerBuf); SDM_read(handleAao, ' buf);
SDM_writeH(headerA a1, i, headerBuf); SDM_read(handleAas, h buf);
SDM_writeH(headerA,az, i, headerBuf); SDM_read(handleAaz, i, buf);

SDM_write(handleA, ao, i, buf);
SDM_write(handleA, az, i, buf);
SDM_write(handleA, az, i, buf);

} }

\ SDM._finalize(3, handleA); /

SDM_finalizeH(3, headerA);

Computation

Figure 3: Example of using the SDM API to perform 1/O in ASTRD3

3.2 Application Programming I nterface

Figure 3 shows how the SDM API is used to perform I/O for datalysis (data group A) in a two-
dimensional version of ASTRO3D

To use SDM, the user must first call the functiBBM. ni ti al i ze. This function initializes the
SDM environment and establishes a connection to the databblext, to specify groups of data sets,
the user must call the functicdBDM.nake_dat al i st . This function assigns properties to the first data
set in a group. The same properties can be assigned to otteesels in the same group by calling
SDMassoci ate_attri but es.

The main reason for making groups of data sets is that SDMleamuse different ways of organizing
data in files, with different performance implications. Ezample, each data set can be written in a separate
file, or the data sets of a group can be written to a single file.

In the case of write operations, the user must 8Bl\lset _at t ri but es to set the attributes associ-
ated with a group and to return a set of handles to be usedrbefu/O operations. If an application writes
header information along with the da@DM.make_header must be used to return an array of handles
for writing the header information. In ASTRO3D, each datais@roup A has a header consisting of six

4

floating-point variables. The functiddDMwr i t eH is used to write the header.

In the case of read operations, data from a specific run caatbeved by specifying attributes of the
data, such as the date of the run. If the date is not specifad,fcbm the last run will be read. Also, the
properties of the data sets need not be specified because &bé¥es this information from the database.
Data can be selected using tBBMsel ect _at t ri but es function. To retrieve header information,
SDMsel ect _at tri but esH must be called.

The main SDM functions for writing and reading data S@BMwr i t e andSDMr ead. Before calling
these functions, the user must provide the informationseany for SDM to perform I/O, such as the starting
points and sizes of the subarray in each dimension in theafdsleck distribution, or the size of process
grids and distribution arguments in each dimension in tlse ad cyclic distribution. To perform 1/O, the
handle of a group, position of a data set within the handleu(), current time step, and pointer to the
application buffer are passed to the SDM I/O function. Ndtat the user does not have to provide file
names. SDM generates the file name and records the name iattizade.

Finally, the user must caBDM.f i nal i ze andSDMf i nal i zeH to close all files, close the connec-
tion to the database server, and free all memory allocatei.

3.3 FileOrganization

SDM supports three different ways of organizing data in fileslevel 1, each data set generated at each
time step is written to a separate file, as shown in Figure 4 fll organization is simple, but it incurs the
cost of a file open and close at each time step, which on somsyBtems can be quite high, as we shall
see in the performance results. For a large number of datasdttime steps, this method can be expensive
because of the large number of file opens.

In level 2, each data set (within a group) is written to a safediile, but different iterations of the same
data set are appended to the same file, as illustrated ind=igurhis method results in a smaller number of
files and smaller file-open costs. The offset in the file whatta & appended is stored in the executialle.

In level 3, all iterations of all data sets belonging to a gr@ue stored in a single file, as shown in
Figure 6. As in level 2, the file offset for each data set isexddn the executioable by process 0 in
the SDMwr i t e function. If a file system has high open and close costs, SDiMgemerate a very small
number of files by choosing the level-3 file organization. ®a other hand, if an application produces a
large number of data sets of large size, level 3 would resuieiy large files, which may affect performance.

We study the performance implications of the three file-nization levels in the next section.

4 Performance Results

We obtained all performance results on the IBM SP and SGIlia2@p0 at Argonne National Laboratory.
The IBM SP has 80 compute nodes and 4 1/0O nodes. Each I/O nodetofour SSA disks, each of
9 Gbyte capacity. The parallel file system on the machine M'sBPIOFS [14]. The SGI Origin2000 has
128 processors and 10 Fibre Channel controllers connextetbtal of 110 disks, each of 9 Gbyte capacity.
The file system on the Origin2000 is SGI's XFS [12, 30]. XFSmans an optimization called direct I/O,
which we used in our experiments. When certain alignmerticéiens are met, the user can choose the
direct-1/0 option, in which the file system moves data disebetween the user’s buffer and the storage
device, bypassing the file-system cache. Direct I/O thumieéites an extra memory copy into the cache
and can perform well if the I/O size is large and the machireahigh-bandwidth I/O system. Direct I/O

(6th time step)

Agroup ASTRO3Da! .Rid.0 ASTRO3Dag .RId.0

I H
“o

ASTRO3Da! .Rld.0 ASTRO3Da$.RId.0 ab

1

ASTRO3Daj .Rld.0 ad ASTRO3Da$.RId.0 ad

2

~

B group ASTRO3Db] .RId.0 ASTRO3Dbj .Rld.0 b

ASTRO3Db? .RId.0 b

o
°

i

ASTRO3Db? .RId.0

ASTRO3Db .Rid.0 b ASTRO3Db; .RId.0 be

ASTRO3Db} .RId.0

o

II

ASTRO3Db .RId. 0 b

Cgroup ASTRO3DCS .RId.0 Gt
ASTRO3DCS RId. 0

ASTRO3DCcS .RId. 0 cs

Figure 4: Level-1 file organization at 6th time step in ASTRDJI he superscript on a data set denotes
the time step at which the data set has been written to a fitedBhotes the current identification number
(runid), and each shadowed box (along with the name begidhadtvs the SDM-generated file for storing
the corresponding data set.

can be used from an MPI-IO program—the ROMIO implementatiovPI1-10 that we used supports direct
I/0O [35]. We present performance results with both direBtahd regular (buffered) I/O.

We used two application templates, ASTRO3D and a three+tiinaal Euler solver, in our performance
experiments. For ASTRO3D, we used a problem siz&56fx 256 x 256. We ran the program for one time
step and performed the data analysis, restart, and vistializdumps at that time step. This resulted in a
total of around 880 Mbytes of data.

The second application is a three-dimensional Euler sdbrethe problem of three-dimensional tran-
sonic flow about an M6 wing [10]. This application is a mestustiured code that writes the physical values
and residual of each node at certain iterations. The streictithese values is a distributed global vector,
and each value has five components (density, energy, araldbogdinates of momentum). In addition, the
application writes the physical coordinates and pressugach mesh point. In our experiments, we ran the
code for 50 iterations and wrote data at every 5 iteratiohe. @roblem size watd4 x 34 x 34.

4.1 Costsof Database Access

SDM uses TCP/IP to connect to the database servers. We pedoour experiments with two different
databases, MySQL [20] and PostgreSQL [24]. Figure 7 showslfitabase-access cost in the SDM write
operation on the Origin2000. As mentioned in Section 3.8,dbnnection to and disconnection from the
database server occuroncésbMi ni ti al i ze andSDMf i nal i ze, respectively. IlBDMset _at t ri but es,
process 0 accesses the mable and accesgatterntable to store attributes, and in the write operation,

(6th time step)

Agroup ASTRO3Da,RId | ag | ag |
ASTRO3DA.RId | ag | ag |
ASTRO3Da.RId | ag | as |

B group ASTRO3Db,.RId ‘ bo ‘ bs ‘
ASTRO3Db,RId | be | bi |
ASTRO3Db,RId | b? | bs |
ASTROSDB.RId | bo | b3 |

Cgroup ASTRO3Dc, RId 5
ASTRO3Dc ,.RId co
ASTRO3DC,RId cs

Figure 5: Level-2 file organization at 6th time step in ASTRDJI he superscript on a data set denotes
the time step at which the data set has been written to a fitedBhotes the current identification number
(runid), and each shadowed box (along with the name begidhadtvs the SDM-generated file for storing
the corresponding data set.

(6th time step)

A group

ASTROSDao.RId‘ al ‘ a ‘

B group

ASTROSDbo.RId‘ bg ‘ ho ‘ ho ‘ ho ‘ bt ‘ bt ‘ b ‘ bt ‘

Cgroup

ASTRO3DCo,RId‘ ct ‘ o ‘

Figure 6: Level-3 file organization at 6th time step in ASTRDJI he superscript on a data set denotes
the time step at which the data set has been written to a fitedBhotes the current identification number
(runid), and each shadowed box (along with the name begidhadtvs the SDM-generated file for storing
the corresponding data set.

1.0 ‘ ‘ 80.0
connect/disconnect
select/update/insert

08 r

60.0 -

40.0 -
= 04

Execution Time (Sec.)
1/0 Bandwidth (MB/sec.)

200 -
02 -

0.0 | D \:’ 0.0

Postgres Mysql Postgres Mysql ’ level 1/2 level 3 level 1/2 level 3

Astro3D Euler Solver (Write Operation) (Read Operation)

Figure 7:Cost of accessing the database for the two apigure 8:1/0 bandwidth for ASTRO3D on the IBM
plications SP

it stores the file offset into the executidable. In ASTRO3D the access to the executiable occurred
19 times, and in the Euler solver the access to the exectalule occurred 60 times. As can be seen in
Figure 7, the database-access cost using both the datarasessvas less than 0.6 sec. This cost, however,
will change according to the number of I/O operations odogrin the applications.

We observed that MySQL performs better than PostgreSQLreftre, we used only MySQL for the
rest of the performance experiments.

4.2 Resaultsfor ASTRO3D

Figure 8 shows the write and read bandwidths for ASTRO3D en®M SP using 32 processors for the
three levels of file organization. Since we ran only one tteraof the program, levels 1 and 2 resulted
in the same file organization. Level 3 achieved much highadbédth because only three different files
were created, and, therefore, only three file opens occuiirkd high cost of file opens on the PIOFS file
system [32] resulted in lower performance for levels 1 and/Rere 19 separate files were created. The
impact of file-open time can indeed be quite large.

Figures 9 and 10 show the write and read bandwidths for ASTR@3the SGI using 16 processors.
We measured performance for both direct I/O and bufferedft® writing data, direct I/O performed better
than buffered I/0O. There are two reasons for this. Firsthwiiffered I/O, XFS serializes concurrent writes
to the same file, whereas with direct I/O, concurrent writessdlowed to proceed in parallel. Second, direct
I/O eliminates a copy into the file-system cache. For readiaig, buffered I/O performed better. Again,
there are two reasons for this. One reason is that XFS doeseniatize buffered reads; therefore, direct
reads do not have any extra advantage in the area of pasallelihe second reason is that XFS performs
a read-ahead (prefetch) in the case of buffered reads, birt nase of direct reads. The read-ahead policy
works well for this application, and buffered reads therefperform better. Since the cost of file opens is
small on XFS, the three levels of file organization performedrly the same.

200.0 200.0

S 1500 | S 150.0 |

Q Q

2 2

m m

=3 =3

£ £

o L Xe] L

2 1000 2 1000

i) i)

c c

[} [}

[ai] [ai]

Q hel

‘E o

S 500 g s00f
0.0 0.0

level 1/2 level 3 level 1/2 level 3 level 1/2 level 3 level 1/2 level 3

(Direct 1/0) (Buffered 1/0) (Direct 1/0) (Buffered 1/0)

Figure 9: Write bandwidth for ASTRO3D on the SGIFigure 10: Read bandwidth for ASTRO3D on the
Origin2000 SGI Origin2000

4.3 Reaultsfor the Euler Solver

Figures 11 and 12 show the write and read bandwidths for ther Eolver on the IBM SP using 32 pro-
cessors. The total data written was around 240 Mbytes. il Bvonly two files were generated, one for
writing the coordinates and pressure at each mesh node arathhbr for writing the physical values and
residual at each node. In level 2, six vectors (that is, thegticoordinates, pressure, physical values of each
node, and nodal residual) were written separately, regpiti a total of six files. In level 1, the six vectors
generated every five iterations were written separatedyltiag in a total of 60 files. As Figures 11 and 12
show, level 3 performed the best because of the high operond?tOFS. In level 1, the file-open cost took
around 80% of the total execution time; in level 2, it tookward 30%; and in level 3, it took around 20% of
the total execution time.

Figures 13 and 14 show the write and read bandwidths for ter Balver using 16 processors on the
SGI. For this application, we used only buffered I/O. We donbt use direct I/O because the memory
allocation for distributed vectors was done inside the migaklibrary (PETSc [23]) that the application
uses, and thus we could not align the buffers to the cachealineequired for direct 1/0O. For the write
operation, levels 2 and 3 performed slightly better thaelldv For the read operation, however, level 1
performed the best. The reason is that the read-ahead pdldyS for buffered reads operates on a per-file
basis and therefore works to the application’s advantaganitthas a greater number of files.

5 Related Work

The main difference between this work and other effortsas this work aims to combine the good features
of parallel file I/O and databases, whereas other effortsfon either parallel I/O or data management, not
both. We briefly mention related efforts below.

SRB (Storage Resource Broker) [2] provides a uniform iatefto access various storage systems, such

40.0 40.0

300 - 300 -

200 - 200 -

Write Bandwidth (MB/sec.)
Read Bandwidth (MB/sec.)

10.0 1 10.0 1

0.0 0.0

level 1 level 2 level 3 level 1 level 2 level 3

Figure 11:Write bandwidth for the Euler solver on theFigure 12: Read bandwidth for the Euler solver on
IBM SP the IBM SP

as file systems, Unitree, HPSS, and database objects. Hputedees not support optimizations such as
collective I/O that MPI-1O provides. Shoshani et al. [28] @8scribe an architecture for optimizing access
to large volumes of scientific data stored on tapes. Chekvenal. [5] describe a general architecture for
managing distributed scientific data sets in a grid enviremmAn architecture for data-intensive distributed
computing using DPSS is described in [37, 38]. The ActivedRepository [17] optimizes storage, retrieval
and processing of very large multi-dimensional datasetsinial discussion of a framework for scientific
data management similar to the one described in this paparas in [6].

Several efforts have involved optimizing I/O in paralleefdystems and runtime libraries [3, 4, 7, 13,
16, 18, 22, 27, 31]. However, file systems and libraries halevar-level interface than SDM, requiring
more work from the user.

6 Conclusionsand Future Work

We have presented the design and implementation of an emr@ot for high-performance scientific data
management, called Scientific Data Manager (SDM), thatilsdutop of MPI-IO and also interacts with a
database for storing metadata. SDM provides a simple, leigdl-interface and performs all necessary 1/O
optimizations transparently to the user. We also experiatbwith different ways of organizing data in files,
called level 1-level 3. In general, when file-open cost onréiqdar file system is high, level 3 performs
well because it minimizes the number of files created. If tleedpen cost is small, the performance of the
three levels depends on how the number and size of files affectormance on the particular file system.
An appropriate file-organization policy can thereby be emder a particular file system.
On the XFS file system, we found that the file-open cost was sl st it did not significantly affect

I/O performance. Instead, our experiment focused on thefdieect I/O and buffered I/O inthe ASTRO3D
template. For writing data, we found that direct I/O perfedhmuch better than buffered I/O by avoiding
the overhead of copying the data into the XFS buffer cacheatsmlbecause XFS allows direct writes to

10

60.0 80.0

S 5 600 |

g - g

o 400 3

2 2

s S

o he) L

3 3 40.0

° °

c c

3 3

o 200 - o

£ ©

2 ¢ 200
0.0 0.0

level 1 level 2 level 3 level 1 level 2 level 3

Figure 13:Write bandwidth for the Euler solver on theFigure 14:Read bandwidth for the Euler solver on
SGI Origin2000 the SGI Origin2000

proceed concurrently. For reading data, however, bufféf@gerformed better because of its read-ahead
policy.

We are developing SDM further to support other types of apilbns such as unstructured-grid applica-
tions and to support visualization. We also plan to inveddgvhether an SDM-like system that stores data
in files using MPI-10 and metadata in a real database can bet®#ly used as a strategy for implementing
libraries such as HDF [36] and netCDF [21].

Acknowledgments

This work was supported by the Mathematical, Informatiord @&omputational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing ReseattB, Department of Energy, under Contract
W-31-109-Eng-38.

References

[1] Applications Working Group of the Scalable I/O Initiadi. Preliminary Survey of I/O Intensive Applications.
http://ww. cacr. cal tech. edu/ SI O pubs/ Sl Oapps. ps, 1994.

[2] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and &itkvan. The SDSC Storage Resource Broker. In
Proceedings of CASCON '9Becember 1998.

[3] Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Dasl, doel Saltz. Jovian: A Framework for Optimizing
Parallel I/O. InProceedings of the Scalable Parallel Libraries Conferempages 10—20. IEEE Computer Society
Press, October 1994.

[4] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok @tmary. Design and Evaluation of Primitives for
Parallel I/O. InProceedings of Supercomputing ;9%ages 452—-461, November 1993.

11

[5] Ann Chervenak, lan Foster, Carl Kesselman, CharlesBaty, and Steven Tuecke. The Data Grid: Towards an
Architecture for the Distributed Management and Analysikarge Scientific Datasets. IAroceedings of the
Network Storage Symposium (NetStore ,99tober 1999.

[6] A. Choudhary, M. Kandemir, H. Nagesh, J. No, X. Shen, \Wldg S. More, and R. Thakur. Data Management
for Large-Scale Scientific Computations in High Perfornebistributed Systems. IRAroc. of the Eighth IEEE
Int'l Symposium on High Performance Distributed Computeges 263—-272, August 1999.

[7] Peter F. Corbett and Dror G. Feitelson. The Vesta pdrikesystem.ACM Transactions on Computer Systems
14(3):225-264, August 1996.

[8] Juan Miguel del Rosario and Alok Choudhary. High Perfante I/O for Parallel Computers: Problems and
ProspectsComputer27(3):59-68, March 1994.

[9] Samuel A. Fineberg, Parkson Wong, Bill Nitzberg, and i€Kuszmaul. PMPIO—A Portable Implementation
of MPI-10. In Proceedings of the Sixth Symposium on the Frontiers of MalgsParallel Computatiorpages
188-195. IEEE Computer Society Press, October 1996.

[10] W. D. Gropp, D. E. Keyes, L. C. Mclnnes, and M. D. Tidritalobalized Newton-Krylov-Schwarz Algorithms
and Software for Parallel Implicit CFD. Technical ReporA&E TR 98-24 (to appear in Int. J. Supercomputer
Applications), 1998.

[11] William Gropp, Ewing Lusk, and Rajeev ThakutJsing MPI-2: Advanced Features of the Message-Passing
Interface MIT Press, Cambridge, MA, 1999.

[12] Mike Holton and Raj Das. XFS: A Next Generation Jouredlb4-Bit Filesystem With Guaranteed Rate I/O.
Technical report, SGI, Inc, 1994.

[13] Jay Huber, Christopher L. Elford, Daniel A. Reed, André. Chien, and David S. Blumenthal. PPFS: A
High Performance Portable Parallel File System.Ptaceedings of the 9th ACM International Conference on
Supercomputingpages 385-394. ACM Press, July 1995.

[14] IBM Corp. IBM AIX Parallel I/O File System: Installati;, Administration, and Use. Document Number
SH34-6065-01, August 1995.

[15] Terry Jones, Richard Mark, Jeanne Martin, John MayieHPserce, and Linda Stanberry. An MPI-10 Interface
to HPSS. InProceedings of the Fifth NASA Goddard Conference on Masa@idystemspages 1:37-50,
September 1996.

[16] David Kotz. Disk-directed I/O for MIMD Multiprocesser ACM Transactions on Computer Systeftts(1):41—
74, February 1997.

[17] Tahsin Kurc, Chialin Chang, Renato Ferreira, Alan $uwms, and Joel Saltz. Querying Very Large Multi-
dimensional Datasets in ADR. FProceedings of SC99: High Performance Networking and CaimgNovem-
ber 1999.

[18] Tara M. Madhyastha and Daniel A. Reed. Intelligent, pilee File System Policy Selection. Proceedings
of the Sixth Symposium on the Frontiers of Massively Pdr@ltamputation pages 172—-179. IEEE Computer
Society Press, October 1996.

[19] Message Passing Interface Forum. MPI-2: Extensionght Message-Passing Interface, July 1997.
htt p: // www. mpi - f orum or g/ docs/ docs. htni .

[20] MySQL Reference Manuaht t p: / / www. mysql . com 1999. Version 3.23.10-alpha.
[21] NetCDF.htt p: //www. uni dat a. ucar . edu/ packages/ net cdf .

[22] Nils Nieuwejaar and David Kotz. The Galley Paralleld=8ystem.Parallel Computing23(4):447-476, June
1997.

12

[23] PETSc 2.0 for MPLht t p: / / www. nts. anl . gov/ pet sc.
[24] Postgres Global Development GrolgnstgreSQL User's Guigé&996.

[25] Jean-Pierre Prost. MPI-IO/PIOFS. World-Wide Web page
http://ww. research. i bm coni peopl e/ p/ prost/secti ons/ nmpiio.htm,h 1996.

[26] D. Sanders, Y. Park, and M. Brodowicz. Implementatiod &erformance of MPI-1O File Access Using MPI
Datatypes. Technical Report UH-CS-96-12, University ofiston, November 1996.

[27] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. @finsBerver-Directed Collective 1/0 in Panda. In
Proceedings of Supercomputing ‘985CM Press, December 1995.

[28] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, andSdm. Storage Management for High Energy
Physics Applications. IiProceedings of Computing in High Energy Physics (CHEP,'2898.

[29] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, andSin. Multidimensional Indexing and Query
Coordination for Tertiary Storage ManagementPhoc. of SSDBM’99pages 214-225, July 1999.

[30] Adam Sweeney, Doug Doucette, Wei Hu, Curtis AndersoikeMNishimoto, and Geoff Peck. Scalability in the
XFS File System. IProc. of USENIX 1996 Annual Technical Conferergan Diego, CA, January 1996.

[31] Rajeev Thakur and Alok Choudhary. An Extended Two-RHdgthod for Accessing Sections of Out-of-Core
Arrays. Scientific Programmings(4):301-317, Winter 1996.

[32] Rajeev Thakur, William Gropp, and Ewing Lusk. An Expeental Evaluation of the Parallel I/O Systems of the
IBM SP and Intel Paragon Using a Production ApplicatiorPtaceedings of the 3rd International Conference of
the Austrian Center for Parallel Computation (ACPC) witreSjal Emphasis on Parallel Databases and Parallel
I/O, pages 24-35. Lecture Notes in Computer Science 1127 .g&gpr\ferlag, September 1996.

[33] Rajeev Thakur, William Gropp, and Ewing Lusk. A Case fftging MPI's Derived Datatypes to Improve 1/O
Performance. IfProceedings of SC98: High Performance Networking and CdimgiNovember 1998.

[34] Rajeev Thakur, William Gropp, and Ewing Lusk. On Impkming MPI-IO Portably and with High Perfor-
mance. InProceedings of the 6th Workshop on 1/O in Parallel and Disited Systemgages 23-32. ACM
Press, May 1999.

[35] Rajeev Thakur, Ewing Lusk, and William Gropp. Users @Gufor ROMIO: A High-Performance, Portable
MPI-IO Implementation. Technical Report ANL/MCS-TM-23athematics and Computer Science Division,
Argonne National Laboratory, Revised December 1999.

[36] The NCSA HDF home pagédt t p: // hdf . ncsa. ui uc. edu.

[37] Brian Tierney, William Johnston, Jason Lee, and Marywifipson. A Data Intensive Distributed Computing
Architecture for Grid ApplicationsFuture Generation Computer Syster8800. To appear.

[38] Brian Tierney, Jason Lee, Brian Crowley, and Mason ltajd A Network-Aware Distributed Storage Cache for
Data Intensive Environments. Rroceedings of the Eighth IEEE International Symposium mhiPerformance
Distributed ComputingAugust 1999.

13

